
Inclusive transformation consistency
control algorithm in distributed system
Santosh Kumawat1* and Ajay Khunteta2

Background
Real-time groupware systems, such as multi-player game, and real-time computer
conferencing in the area of computer-supported cooperative work have multiple users
where the actions of all users must be propagated to all other users.

Groupware systems are multi-user systems that provide an interface to a multi-user
shared environment, which require sharing of data, fine-granularity, concurrency
control, and fast response times. Concurrency control protocols are needed to repair
inconsistencies in the multi-user transactions and areas of computing systems, such as
database systems, distributed systems, and groupware systems. Therefore, there are spe-
cific requirements (Sun et al. 1998): high local responsiveness, unconstrained interac-
tion, real-time communication, and consistency.

Theorem 1  In a consistent shared environment which has replicated data after execu-
tion of all operations, all have the same data.

Traditional concurrency control methods, such as locking, transactions, single active par-
ticipant, dependency detection, and reversible execution, may cause the loss of interaction

Abstract 

Operational transformation (OT) is the most effective method for consistency and
concurrency control in multi-user groupware applications. This study proposes a new
string-based OT algorithm to address the challenge of swapping and transposing
two deletions. It has removed the faults of previous existing algorithm swapDD (ABTS:
a transformation-based consistency control algorithm for wide-area collaborative
applications, collaborative computing: networking, applications and worksharing 1–10,
2009). Existing algorithm swapDD fails totally in transposing two deletions if the first
operation region is included in the second operation region or the second operation
string is covered by the first operation string. In addition, swapDD has not considered
partial overlapping between two deletions in swapping and fails at boundary condi-
tions. New proposed algorithm works well in all possible cases of transposing two
deletions. It handles overlapping and splitting of operations.

Keywords:  Inclusive transformation algorithm, Distributed systems, Concurrency
control, Consistency control, Groupware system

Open Access

© 2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

RESEARCH

Kumawat and Khunteta ﻿Technol Innov Educ (2016) 2:9
DOI 10.1186/s40660-016-0015-3

*Correspondence:
santoshkumawat82@ymail.com
1 School of Engineering
and Technology, Poornima
University, IS‑2027 To 2031
Ramchandrapura P.O. Vidhani
Vatika Sitapura Extension,
Jaipur, Rajasthan 303905,
India
Full list of author information
is available at the end of the
article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40660-016-0015-3&domain=pdf

Page 2 of 17Kumawat and Khunteta ﻿Technol Innov Educ (2016) 2:9

results and were not suitable for distributed interactive applications that demand fast local
response satisfying user intentions, intention consistency, and convergence.

Over the past decade, operational transformation (OT) has become an established
acceptable method for consistency maintenance in group editors. Compared with alter-
native concurrency control methods, OT has been found uniquely promising in better
way achieving convergence, causality, and intention preservation without killing respon-
siveness and concurrent work (Shao et al. 2009). OT allows users to edit any part of
the shared data at any time. Local operations are always executed as soon as they are
generated by the user. Remote operations are transformed before execution to repair
inconsistencies. Most of the existing OT algorithms only support primitive character
operations like insert and delete. Only a few OT algorithms support string primitive
operations like insert and delete.

Review of OT algorithms
Operational transformation algorithms have been studied over the past 25 years. OT
algorithms correctness cannot be formally proved due to informal condition called
“intention preservation.” OT algorithms only consider two primitive character-based
operations like insert and delete.

We have reviewed a number of major OT algorithms for consistency maintenance
in real-time group editors, including the distributed operation transformation (dOPT)
algorithm (Ellis and Gibbs 1989), the generic operational transformation (GOT) algo-
rithm (Sun and 1998), GOT optimized (GOTO) algorithm (Sun et al. 1998), state dif-
ference transformation (SDT) algorithm (Li and Li 2006), SCOT2 (Suleiman et al.
1998), SCOT 3/4 algorithm (Vidot et al. 2000), adopted (adOPTed) algorithm (Ressel
et al. 1996), admissibility-based transformation (ABT) algorithm (Li and Li 2010), ABT-
undo (ABTU) algorithm (Shao et al. 2010), admissibility-based sequence transformation
(ABST) (Sun and 1998), and admissibility-based transformation with strings (ABTS)
algorithm (Shao et al. 2009).

On categorizing all existing OT algorithms on the basis of major existing algorithms,
such as dOPT, adOPT, GOT, GOTO, SDT, SOCT2, SOCT3/4, ABT (Li and Li 2007),
and then further classified on the basis of area of operation, such as undo, char, string,
web, graph and so on, we get that only three algorithms support string handling—
GOT, GOTO and ABTS. We conclude that ABTS supports for string handling and is
better than GOT and GOTO, because it has less time complexity and space complex-
ity. In addition, ABTS is based on ABT framework, which can be formally proved. We
conclude that ABTS is the best string-based OT algorithm as has less time and space
complexity than GOT and GOTO (see Fig. 1). This study is focused on string-based OT
algorithm based on ABT framework and removed the faults of ABTS algorithm.

System model and notations
In a multi-user system on starting of session, the shared data are replicated at all sharing
sites. In OT, local operations are executed immediately without delay, and local operations
are propagated to remote sites in the background, so local operations execution do not
suffer. The shared data are like a linear string ‘s’ of atomic characters and positions ‘p’ in
the string that starts from zero and consider two only primitive string operations, called,

Page 3 of 17Kumawat and Khunteta ﻿Technol Innov Educ (2016) 2:9

insert(p, s) and delete(p, s). Here, insert(p, s) insert ‘s’ at location ‘p’ in given string defini-
tion. In addition, delete(p, s) delete ‘s’ at location ‘p’ in given string definition. The opera-
tions o1 and o2 are contextually serialized, denoted by o1 → o2, if o2′s position is defined
in the resulting state of applying o1 (but no other operation). The standard notations are
summarized in Table 1, where a few standard notations are taken from (Shao et al. 2009).

Definition 1  o1 and o2 are contextually equivalent o1||o2, o1Uo2 and if input is o1
and output then output should be o2 → o1′.

Definition 2  If we have exec(oi), then all exec(oi−1) must be completed then only oi
satisfy causality.

Definition 3  If o1Uo2, then IT(o1,o2) satisfy admissibility. It does not have inconsist-
ent order at shared environment.

Algorithms
The basic swap functions for swapping two primitive operations insert and delete exist
in (Shao et al. 2009). Given two operations o1 and o2, where o1 → o2, function swap(o1,
o2) transposes them into o1′ and o2′, such that o2′ → o1′. Depending on their types,
insert (I) and delete (D), we call different swapping functions. The basic swap function
for swapping primitive operations two deletions is swapDD (Shao et al. 2009). Here,
swapDD and MGswapDD take two string operations o1 and o2 as parameters. Here,

Distributed System

Groupware System

Satisfy: Concistency &
Concurrency Control

Yes
No

OT Algorithms

Traditional Consistency
Methods

OT Algos

Character Algorithms

String Algorithms

OT Algos

GOT Algorithm
GOTO Algorithm ABTS Algorithm

Time Complexity: A bit less than adOPTed
Space Complexity: O(|H|)

Time Complexity: O(|H2|)
Space Complexity: O(|H2|)

Time Complexity: O(|H2|)
Space Complexity: O(|H|)

ABTS best String OT Algorithm

dOPT, adOPTed, SDT, SOCT2,
SOCT3/ 4, ABT main Algorithms

Fig. 1  Flow of problem justification process

Page 4 of 17Kumawat and Khunteta ﻿Technol Innov Educ (2016) 2:9

o1.type = o2.type = delete. Before swapping, we have o1 → o2 and after swapping, we
get o1′ and o2′, so that we can have o2′ → o1′.

Algorithm swapDD

Algorithm swapDD (o1, o2) transposes two deletions o1 and o2. There are three cases
considered by (Shao et al. 2009). First, if o2.pos ≥o1.pos, it means that o2 is to delete a
substring on the right side of the substring o1.str deleted by o1. Hence, if we execute o2
before o1 instead, then o2.pos should consider o1.str, because it has not been deleted
yet. Therefore, o2 position shifted right by length of o1.str.

Second, if o2.pos + |o2.str| ≤o1.pos, it means that o2.str is completely on the left side
of o1.pos. Hence, if o2 get executed before o1 instead, o1.pos should be shifted to the
left, because o2.str has already been deleted.

Third, as in lines 6–12, o1.str is completely covered by o2.str. Then, if o2 get executed
before o1 instead, o2.str is divided into three parts, among which the middle overlap-
ping part is to be deleted by o1. The remaining left and right parts, as divided by posi-
tion o1.pos, are deleted by two suboperations o2L and o2R, respectively. At last, finally,
o1.pos should be set to o2.pos due to the deletion of o2L.str.

Algorithm swapDD (o1, o2): (o2′, o1′)

	 1.	 o1′ ← o1; o2′ ← o2;
	 2.	 if o2.pos > = o1.pos then

Table 1  Standard notations

Notations Description

o.id Id of site that generate operation o

o.type Type of operation o, i.e., either insert or delete

o.pos Position of operation o

o.str String insert/delete by o

o1 → o2 o1 occurs before o2

o1||o2 o1 and o2 are concurrent

o1Uo2 o1 and o2 are contextually equivalent

o1 → o2 o1 and o2 are contextually serialized

[o1,o2] An ordered list of two operations o1 and o2

<o1,o2> Two operations in sequence

|L| Number of objects in list L

L1.L2 Concatenation of two lists L1 and L2

s [i:len] Substring of string s start from position i of length len

sq A sequence is a special list in which all elements are operations that
are contextually serialized

sq = <o1, o2,…, on> sq = <o1, o2,…, on > , where o1 - > o2- > …- > on

< > An empty sequence

L = [a, b, c], it has L = [a]· [b, c] = [a, b]· c A sequence is a special list in which all elements are operations that
are contextually serialized

|sq| = n The number of elements in sequence sq = n

sq = < o1 > . < o2,… on > All elements of sequence are contextually serialized

R1 = [o1.start, o1.end] Operation region of operation o1 s R1 which start from o1.start & end
at o1.end

o.Substring (i,len) Substring of o start from i of length len

o.Substring (i) Substring of o start from i position in o

Page 5 of 17Kumawat and Khunteta ﻿Technol Innov Educ (2016) 2:9

	 3.	 o2′.pos ← o2.pos + | o1.str|
	 4.	 else if o2.pos + | o2.str| ≤ o1.pos then
	 5.	 o1′.pos ← o1′.pos−| o2.str|
	 6.	 else
	 7.	 o2L ← o2R ← o2

	 8.	 o2L.str ← o2.str[0: o1.pos−o2.pos]
	 9.	 o2R.pos ← o1.pos + | o1.str|
	10.	 o2R.str ← o2.str[o1.pos−o2.pos:]
	11.	 o2′.sol ← [o2L, o2R]
	12.	 o1′.pos ← o2.pos
	13.	 endif
	14.	 return(o2′, o1′)

Failure of algorithm swapDD

Algorithm swapDD fails in most of cases in swapping two deletions. Failure of algorithm
swapDD in various conditions is highlighted in the following cases:

Case 1: If o2.pos ≥o1.pos  In this case, swapDD fails at boundary condition means that
if o2.pos = o1.pos, it fails totally (lines 2–3 of algorithm swapDD).

Case 2: If there exist partial overlapping between deletion operations o1 and o2
regions  Here, partial overlapping between o1 and o2 means region of o1 and o2 overlaps
to each other. In addition, we can say that o1.str partially overlaps by o2.str. There can
be either overlapping along the left border of o1 with o2 or overlapping along the right
border of o1 with o2. In this case, lines 2–3 of algorithm swapDD execute for the right
overlapping of o1.str with o2.str, and lines 6–13 of algorithm swapDD execute for the left
overlapping of o1.str with o2.str and it totally fails. As per the details of this algorithm
given in (Shao et al. 2009), it has not discussed partial overlapping between two deletion
operations o1 and o2 but in algorithm not put required conditions to avoid partial over-
lapping of o1 and o2. Therefore, either it has not considered the partial overlapping of o1
and o2 in swapDD just by assumption or it totally fails in this case.

Case 3: If o1.str completely overlaps by o2.str  In this case, swapDD lines 6–13 get exe-
cuted, and it gives total wrong output in all cases. Ideally as per algorithm swapDD the-
ory specified in (Shao et al. 2009), it should divide o2.str into three parts, among which
the middle overlapping part is to be deleted by o1. However, it fails in splitting o2.str in
the remaining left and right parts which are to be deleted by two suboperations o2L and
o2R, respectively.

Case 4: If o2.str completely overlaps by o1.str  This case is not discussed in theory of
swapDD given in (Shao et al. 2009), but if we have this case, lines 2–3 of swapDD get
executed and give total faulty result.

Therefore, it is concluded that swapDD fails totally in swapping two deletions if there
exist partial or total overlapping of o1.str by o2.str. In addition, in a few cases, it fails
totally at boundary conditions.

Page 6 of 17Kumawat and Khunteta ﻿Technol Innov Educ (2016) 2:9

Page 7 of 17Kumawat and Khunteta ﻿Technol Innov Educ (2016) 2:9

Algorithm MGswapDD

The new proposed algorithm MGswapDD has removed all faults of the existing algo-
rithm swapDD and is working well in all possible cases of swapping two deletions. It
works well at all boundary conditions. It has also considered the partial overlapping of
operations o1.str and o2.str. Also if o1.str completely overlaps by o2.str or o2.str com-
pletely overlaps by o1.str, then also it works well totally. Thus, it considers well overlap-
ping and splitting of operations. The MGswapDD is practically implemented in lab and
works well on partial or total overlapping of operations. In addition, it works well on not
overlapping operations and boundary conditions.

Algorithm MGswapDD is for swapping and transposing two deletions. The process of
MgswapDD is explained in the following points. Here, if we have o ← null means, o is
initialized to null and will not perform any operation:

1.	 From Line 3 if(o2.pos > (o1.pos + |o1.str|)), means if o2 lies completely on the right
side of o1 then, if we execute o2 before o1 instead, then o2.pos should consider o1.str,
because it has not been deleted yet. Therefore, o2 position shifted right by length of
o1.str.

2.	 From Line 5 if ((o2.pos + |o2.str|) < o1.pos), means o2.str is completely on the left
side of o1.pos. Hence, if o2 get executed before o1 instead, o1.pos should be shifted
to the left, because o2.str has already been deleted. Therefore, o1 shift left equal to
length of o2.str.

3.	 From Line 7 if (o2.pos > o1.pos&&o2.pos ≤ (o1.pos + |o1.str|)&&(o2.pos + |o2.
str|) > (o1.pos + |o1.str|)), means o1.str overlaps partially with o2.str along its right
boundary, then o1.str and o1 position will remain unchanged and o2′ position will
shift right by the length of overlapping region of o1.str and o2.str. In addition, o2′.
str will be set to not overlapping part of o2 string. Here, the overlapped region gets
deleted by o1′, and o2′ deletes the remaining not overlapping region of o2.str.

4.	 From Line10 if(o2.pos < o1.pos&&(o2.pos + |o2.str|) ≥o1.pos && o1.pos + |o1.
str| > (o2.pos + |o2.str|), means o1.str overlaps partially with o2.str along its left
boundary then the overlapped region gets deleted by o1, and o2 deletes the remain-
ing not overlapping region. Here, o2′ string will reduced to not overlapping part of
o2 string by deducting the overlapped region from the existing o2 string. In addition,
o1′ position is shifted right by length of o2′ string, since o2′ is already deleted since
after swapping, we have o2′ → o1′.

5.	 From lines 13–25 get executed if none of the above conditions are true. Line 14 check
if o2.str completely covered by string o1.str. If o1 and o2 delete the same substring of
given string sequence ‘s’ which lie at the same position, then also condition at line 14 is
true. In this case, o2 initialized to null, and o1 deletes the o1.str from o1 position. Lines
16–25 are executed if o1.str is completely covered by o2.str. Then, if o2 get executed
before o1 instead, o2.str is divided into three parts, among which the middle overlap-
ping part is to be deleted by o1. The remaining left and right parts are deleted by two
suboperations o2L and o2R of o2′, respectively. At last, o1′.pos should be set to o2.pos
due to the deletion of o2L.str. Therefore, if o1 is totally overlapped by o2 string, then
the overlapping region gets deleted by o1, and o2 deletes its remaining regions left and
right called o2Lpart and o2Rpart, respectively, which are separated by o1 region.

Page 8 of 17Kumawat and Khunteta ﻿Technol Innov Educ (2016) 2:9

Correctness proof
In multi-user environment, practically, we have implemented ABTS and MGswapDD in
lab using Qualnet and ASP.Net software.

Algorithm swapDD

Case 1: If o2pos = o1.pos  In this case, swapDD fails at boundary condition means that if
o2.pos = o1.pos, it fails totally (lines 2–3 of algorithm swapDD).

For example, let s = “TheGodHelpAllEqually.” Here, suppose o1 = delete(3, “God-
Help”) and o2 = delete(3, “God”). Therefore, condition at line 2 if(o2.pos ≥o1.pos) is
true, since o2.pos = o1.pos, so by line 3, we get o2′.pos = o2.pos + |o1.str| so we get o2′.
pos = 3+7 = 10. Here, in given string definition s, we apply o2′ = delete(10, “God”);
the operation fails since at starting position ‘10’ substring “God” not found (see Fig. 2).
Therefore, swapDD fails totally.

If we implement new proposed MGswapDD for the same inputs like case 1, we get
o1′ = o1 and o2′ = null, so get right input because if o1′ get executed, then no need to
execute o2′ because o2 string get deleted by o1′ since o2 string is overlapped by o1 string
(see Fig. 3).

Case 2: If there exist partial overlapping between deletion operations o1 and o2
regions  Here, partial overlapping between o1 and o2 means region of o1 and o2 over-
laps to each other.

For example, let s = “TheBirdsAreFlyingInTheSky”
Let o1.str = “BirdsAreFlying” and o1.pos = 3,|o1.str| = 14
o2.str = “FlyingInTheSky” and o2.pos = 11.
Here, o1 overlaps with o2 along its right boundary. And if we execute swapDD; con-

dition at line 2 is correct that is (o2.pos ≥o1.pos), since 11 > 3, so enter in if block

Fig. 2  Practical implementation of swapDD in lab for inputs of case 1 (wrong output)

Page 9 of 17Kumawat and Khunteta ﻿Technol Innov Educ (2016) 2:9

and execute the code at line 3 that are o2′.pos = o2.pos + |o1.str|, so here, we get o2′.
pos = 11 + 14 = 25, so we get o2′ = delete (25, “FlyingInTheSky”). The operation o2′ fails
since at starting position ‘25’ substring “FlyingInTheSky” not found. Even position ‘25’
not exist in given ‘s’. Thus, swapDD fails totally (see Fig. 4).

When we implement MGswapDD in lab practically for inputs of case 2, we get
o1′ = o1. o2′.pos = 17 and o2′.str=‘‘InTheSky” which give right output, because there
exist no overlapping in o1′ and o2′ and both lie at given position in string ‘s’ (see Fig. 5).

Case 3: If o1.str completely overlaps by o2.str  In this case, swapDD lines 6–13 get exe-
cuted and it gives total wrong output in all cases.

Fig. 3  Practical implementation of MGswapDD in lab (right output)

Fig. 4  Practical implementation of swapDD in lab for inputs of case 2 (wrong output)

Page 10 of 17Kumawat and Khunteta ﻿Technol Innov Educ (2016) 2:9

For example, s = “WorkNotO nlyHardButGoodAlso”.
Let o1 = delete(7, “Only”); o2 = delete(4, “NotOnlyHard”)
Here, on executing swapDD lines 6–13, it will get executed, and we get from line7:

o2L ← o2 and o2R ← o2. From line 8: o2L.str ← o2.str [0:o1.pos−o2.pos], so we get o2L.
str ← o2.str [0:7−4] = “Not”;

Also from line 9, we get o2R.pos ← o1.pos + |o1.str|; so we get o2R.pos ← 7 + 4 = 11.
And from Line 10 we get o2R.str ← o2.str [o1.pos−o2.pos:]; so we get o2R.str ← o2.str[7
− 4:]; so we get o2R.str ← “OnlyHard”. Therefore, we get o2R = delete (11, “OnlyHard”)
but in given ‘s’ at position 11 “OnlyHard” not exist so o2′.sol ← [o2L, o2R] also fails totally
(see Fig. 6).

When we practically implemented MGswapDD in lab for inputs of case 3, we get o1′.
str = o1.str and o1′.pos = 4. We get o2L’.str = “Not” and o2L’.pos = 4, o2R’.str = ‘‘Hard”,

Fig. 5  Practical implementation of MGswapDD in lab for inputs of case 2 (right output)

Fig. 6  Practical implementation of swapDD in lab for inputs of case 3 (wrong output)

Page 11 of 17Kumawat and Khunteta ﻿Technol Innov Educ (2016) 2:9

o2R’.pos = 11 which give desired output, because o1 overlapped completely by o2 and
overlapped region of o2 get deleted by o1′ so o2′ split in o2L’ and o2R’ to get desired
output (see Fig. 7).

Case 4: If o2.str completely overlaps by o1.str  If o2.str completely overlaps by o1.str,
then in this case, swapDD lines 2–3 get executed and it gives total wrong output in all
cases.

For example:
Let s = “GodHelpThoseWhoHelpThemselves”
o2 = delete (12, “Who”);
o1 = delete (3, “HelpThoseWhoHelp”);
Here on executing swapDD lines 2–3 will get executed and we get wrong output.
o1’ = “HelpThoseWhoHelp” o1’ position = 3 o2’ = “Who” o2’ position = 28
Algorithm swapDD failed. Thus, o2′.sol ← [o2L, o2R] fails totally (see Fig. 8).
When we practical implement MGswapDD in lab for inputs of case 4, we get o1′.

pos = “HelpThoseWhoHelp” and o1′.pos = 3. Also o2′ = null, because o2 overlapped by
o1 and o1′ delete the overlapped region so no need to execute o2′ (see Fig. 9).

Algorithm MGswapDD

Case 1: If o2.pos = o1.pos  Here, in this case on executing MGswapDD lines 13–25, it
will get executed and will give right result.

For example, let s = “TheBirdsAreFlyingInTheSky”
o1 = delete(3, “BirdsAreFlying”); o2 = delete(3, “Birds”)
Condition at line 14 is correct so switch to line 15. Condition if (((o1.pos + |o1.str|) ≥(o2.

pos + |o2.str|))&& (o1.pos ≤ o2.pos)). Here, we get if((3 + 14) ≥ (3 + 5)&&3 ≤3) returns
true so code at line 15 that is o2′ ← null get executed means o2′ will not execute any

Fig. 7  Practical implementation of MGswapDD in lab for inputs of case 3 (right output)

Page 12 of 17Kumawat and Khunteta ﻿Technol Innov Educ (2016) 2:9

operation both its string and position are null. And o1′ ← o1 from line 1, so we get
desired output “TheInTheSky” after execution of o1′ and o2′ where o2′ is null. It satisfies
user intentions also (see Fig. 10).

Case 2: If there exist partial overlapping between deletion operations o1 and o2
regions  Here, two cases are possible either o1.str overlaps with o2.str along its right
border or left border.

First, we consider the case when o1.str overlaps with o2.str along its rightboundary. For
example, let s = “GodPleaseHelpMeToTakeCareMyChild”.

Fig. 8  Practical implementation of swapDD in lab for inputs of case 4 (wrong output)

Fig. 9  Practical implementation of MGswapDD in lab for inputs of case 4 (right output)

Page 13 of 17Kumawat and Khunteta ﻿Technol Innov Educ (2016) 2:9

o1 = (3, “PleaseHelpMe”); |o1.str| = 12 and |o2.str| = 12; o2 = delete(13, “MeToTake-
Care”); o1.pos = 3 and o2.pos = 13.

Since on executing MGswapDD condition at line 7 is true that is if (o2.pos > o1.
pos&&o2.pos ≤(o1.pos +|o1.str|) && (o2.pos + |o2.str|) > (o1.pos + |o1.str|)) returns
true, so lines 8 and 9 will get executed.

Step 8: o2′.pos = o2.pos + ((o1.pos + |o1.str|)−o2.pos);
Step 9: o2′.str = o2.Substring ((o1.pos + |o1.str|)−o2.pos);
From step 8, o2′.pos = 13 + (3 + 12)−13; o2′ = 15;
Step 9: o2′.str = o2.Substring (3 + 12−13) = o2.Substring(2), so o2′.str = “ToTakeCare”.

We get o2′ = delete (15, “ToTakeCare”) and it runs well since at position 15 “ToTake-
Care” exist in given ‘s’. Therefore, the overlapped substring “Me” get deleted by o1′ and
o2′ has deleted just unoverlapped part of o2. Here, o1′ ← o1 from line 1. So again, we get
totally right output satisfying user intentions (see Fig. 11).

Second, we consider the case when o1.str overlaps with o2.str along its left boundary.
For example, let s = “GodPleaseHelpMeToTakeCareMyChild”.
o2 = (3, “PleaseHelpMe”); |o2.str| = 12 and |o1.str| = 12; o1 = delete(13, “MeToTake-

Care”); o2.pos = 3 and o1.pos = 13. Since on executing MGswapDD condition at line
10 is true that is so the given code will get executed. Therefore, condition at line 10 is
as follows: if(o2.pos < o1.pos&&(o2.pos + |o2.str|) ≥ o1.pos && o1.pos + |o1.str| > (o2.
pos + |o2.str|)) returns true so from Step 11: o2′.str = o2.Substring (0, (o1.pos−o2.pos));
so we get o2′.str = o2.Substring (0,(13−3)) = “PleaseHelp”; here |o2′.str| = 10; and from
step Step 12: o1′.pos = o1.pos−|o2′.str|; we get o1′.pos = 13−10 = 3. Since after dele-
tion by o2′ the o1′. pos should left by the length of o2′.str as o2′ lies left of o1′ and is
already deleted. Here, we get finally o1′ = delete(3, “PleaseHelpMe”) and o2′ = delete(15,
“ToTakeCare”) and o2′ → o1′ work well after swapping of o1 → o2.

In this case, also we get right output.

Fig. 10  Practical implementation of MGswapDD in lab for inputs of case 1 (right output)

Page 14 of 17Kumawat and Khunteta ﻿Technol Innov Educ (2016) 2:9

Case 3: If o1.str completely overlaps by o2.str  In this case, all the above conditions
before line 13 are false so enter in else block at line 13. Here, condition at Step 14: if(((o1.
pos + |o1.str|) ≥ (o2.pos + |o2.str|))&& (o1.pos ≤ o2.pos)) is false so enter in its else part.
So lines 16 to 25 get executed.

For example, let s = “The Sun give us Heat and Light”; o1 = delete(13, “us”) and
o2 = delete(4, “Sun give us Heat”). From Step 17: o2Lpart ← o2; o2Lpart.str = o2.str; here,
we have o2Lpart.str = “Sun give us Heat”. From Step 18: o2Lpart.pos = o2.pos; Here we
have o2Lpart.pos = 4. From Step 19: o2Rpart ← o2; o2Rpart.str = o2.str; here, we have o2Rpart.
str = “Sun give us Heat”. From Step 20: o2Rpart.pos = o2.pos; here, we have o2Rpart.pos = 4.

From Step 21: o2Lpart.str = o2.Substring (0, o1.pos−o2.pos); here, we have o2Lpart.
str = o2.Substring (0,13−4) ≥ o2Lpart.str = o2.Substring (0,9) = “Sun give”. From Step 22:
o2Rpart.pos = o1.pos + |o1.str|; here, we have o2Rpart.pos = 13 + 2=15. From Step 23:
o2Rpart.str = o2.Substring (o1.pos−o2.pos + |o1.str|); here, we have o2Rpart.str = o2.Sub-
string (13−4 + 2) = o2.Substring (11) = “Heat”. From Step 24: o2′.sol ← [o2Lpart, o2Rpart];
so the left part “Sun give”. get deleted by operation o2Lpart;right part “Heat” get deleted
by o2Rpart and the middle overlapping región “us” get deleted by o1 and by Step 25: o1′.
pos = o2.pos;so we get o1′.pos = 4 since at first o2′ get executed and since o2Lpart is
already executed the position of o1′ shift left to o2.pos. So o2′ → o1′ works correctly here
(see Fig. 12).

Case 4: If o2.str completely overlaps by o1.str  In this case, all the above conditions
before line 13 are false so enter in else block at line 13. Here, condition at Step 14: if (((o1.
pos + |o1.str|) ≥ (o2.pos + |o2.str|))&& (o1.pos ≤ o2.pos)) is true so enter in its if part. So
step 15 will get executed.

Fig. 11  Practical implementation of MGswapDD in lab for inputs of case 2 (right output)

Page 15 of 17Kumawat and Khunteta ﻿Technol Innov Educ (2016) 2:9

For example, let s = “The God will help me always everywhere”. o1 = delete (4, “God
will help me”) and o2 = delete (8, “will”). Here, condition at Step 14: if(((o1.pos + |o1.
str|) ≥ (o2.pos + |o2.str|))&&(o1.pos ≤o2.pos)) that is if((4 + 15) ≥ (8 + 4)&&4 ≤8) is
true so condition at line 15 get executed where o2′ is set to null means will not perform
any operation and o1 will remain as it is. If o1 will execute the region of o2 which is cov-
ered by o1 will automatically deleted giving right output. Here, o2′ → o1′ is equal to exe-
cution of o1′ only, since o2′ is null and also o1′ ← o1 from line 1 (see Fig. 13).

Conclusion
Operational transformation is the most optimistic method for concurrency and consist-
ency control in muti-user groupware systems.

ABTS is the best string handling OT algorithm. The swapDD function of ABTS is pro-
posed to swap two deletions, but swapDD fails totally if there exist partial overlapping
between two deletions. In addition, it fails if one deletion operation string is totally cov-
ered by other deletion operation string. In few other cases, also swapDD fails at bound-
ary conditions.

We propose a new algorithm MGswapDD to swap two deletions. It is also based on
ABT framework and support string handling. It considers and works well in splitting
and overlapping of operations. It works well on all boundary conditions also. It is practi-
cally implemented in lab also covering all possible cases of swapping two deletions. It
gives totally right result if either there exist partial overlapping between two deletions
or if one deletion operation string is totally covered by other deletion operation string.
Therefore, in brief, it has removed all faults of the existing swapDD and work well in all
possible cases of swapping two deletions.

Fig. 12  Practical implementation of MGswapDD in lab for inputs of case 3 (right output)

Page 16 of 17Kumawat and Khunteta ﻿Technol Innov Educ (2016) 2:9

Future work
Still there is scope to extend the support to other composite operations of string han-
dling and char handling. Also there is need to support better data structures. A lot of
work is done to reduce time complexity and space complexity. Still there is a scope to
reduce time complexity and space complexity.
Authors’ contributions
SK made substantial contributions to conception and design, acquisition of data, and analysis and interpretation of data;
has been involved in drafting the manuscript or revising it critically for important intellectual content; has given final
approval of the version to be published, and agrees to be accountable for all aspects of the work in ensuring that ques-
tions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. AK provided
full guidance and support in all of the above works. Both authors read and approved the final manuscript.

Author details
1 School of Engineering and Technology, Poornima University, IS‑2027 To 2031 Ramchandrapura P.O. Vidhani Vatika Sita-
pura Extension, Jaipur, Rajasthan 303905, India. 2 Poornima College of Engineering, Jaipur, Rajasthan, India.

Acknowledgements
The paper is dedicated to my mother Meera Devi and daughter Harshita Kumawat.

Competing interests
The authors declare that they have no competing interests.

Received: 4 January 2016 Accepted: 13 May 2016

References
Ellis CA, Gibbs SJ (1989) Concurrency control in groupware systems. In ACM SIGMOD 1989 Preceedings, p 399–407,

Portland Oregon
Li D, Li R (2006) An approach to ensuring consistency in peer-to-peer real-time group editors. Comput Support Co-op

Work (2008) 17:553–611. doi:10.1007/s10606-005-9009
Li R, Li D (2007) A new operational transformation framework for real-time group editors. IEEE Trans Parallel Distrib Syst

18(3):307–319
Li D, Li R (2010) An admissibility-based operational transformation framework for collaborative editing systems. Comput

Support Co-op Work 19:1–43. doi:10.1007/s10606-009-9103-1
Ressel M, Nitsche-Ruhland D, Gunzenha R (1996) An integrating, transformation-oriented approach to concurrency con-

trol and undo in group editors. Proc. ACM conf. computer supported cooperative work (CSCW 1996), p 288–297
Shao B, Li D, Gu N (2009) ABTS: A transformation-based consistency control algorithm for wide-area collaborative appli-

cations, collaborative computing: networking, applications and worksharing. CollaborateCom 2009. 5th Interna-
tional Conference on Nov. 2009 doi: 10.4108/ICST.COLLABORATECOM2009.8271. p1–10, 11–14

Fig. 13  Practical implementation of MGswapDD in lab for inputs of case 4 (right output)

http://dx.doi.org/10.1007/s10606-005-9009
http://dx.doi.org/10.1007/s10606-009-9103-1
http://dx.doi.org/10.4108/ICST.COLLABORATECOM2009.8271

Page 17 of 17Kumawat and Khunteta ﻿Technol Innov Educ (2016) 2:9

Shao B, Li D, Gu N (2010) An algorithm for selective undo of any operation in collaborative applications, in ACM
Suleiman M, Cart M, Ferrié J (1998) Concurrent operations in a distributed and mobile collaborative environment. Pro-

ceedings of the fourteenth international conference on data engineering, p 23–27
Sun C, Ellis C (1998) Operational transformation in real-time group editors: issues, algorithms, and achievements In ACM

CSCW 1998, p 59–68
Sun C, Jia X, Zhang Y, Yang Y, Chen D (1998) Achieving convergence, causality-preservation, and intention preservation in

real-time cooperative editing systems. ACM Trans Comput Hum Interact 5(1):63–108
Vidot N, Cart M, Ferrie J, Suleiman M (2000) Copies convergence in a distributed real-time collaborative environment.

Proceedings of the 2000 ACM conference on computer supported cooperative work. ACM Press, New York, pp
171–180

	Inclusive transformation consistency control algorithm in distributed system
	Abstract
	Background
	Review of OT algorithms
	System model and notations
	Algorithms
	Algorithm swapDD
	Failure of algorithm swapDD
	Algorithm MGswapDD

	Correctness proof
	Algorithm swapDD
	Algorithm MGswapDD

	Conclusion
	Future work
	Authors’ contributions
	References

